Analysis 1 - Mid-Sem exam - 2008-09

B.Math (Hons.)

Problem 1. Consider the sequences $\{a_n\}_{n\geq 1}$, $\{b_n\}_{n\geq 1}$, $\{c_n\}_{n\geq 1}$ where

$$a_n = 1 + \left(-\frac{1}{5}\right)^n; \quad b_n = (-1)^n + \frac{2}{n}; \quad c_n = \frac{6n+4}{7n-5}$$

Compute the limit superior and limit inferior (as n tends to infinity) for these sequences.

Solution. (a)
$$a_n = 1 + \left(-\frac{1}{5}\right)^n$$

Note that

$$|a_n - 1| = \left(\frac{1}{5}\right)^n \to 0$$

as $n \to \infty$. Hence $a_n \to 1$. Therefore $\limsup a_n = \liminf a_n = 1$.

(b) $b_n = (-1)^n + \frac{2}{n}$ Let $x_n = \sup_{k \ge n} b_k$. Then we have

$$x_n = \begin{cases} 1+2/n & \text{if } n \text{ is even} \\ 1+2/(n+1) & \text{if } n \text{ is odd} \end{cases}$$

Therefore $\limsup b_n = \lim x_n = 1$.

Let
$$y_n = \inf_{k \ge n} b_k = -1$$
. Thus we have $\liminf b_n = \lim y_n = -1$.

(c)
$$c_n = \frac{6n+4}{7n-5}$$

Note that

$$\left|\frac{6n+4}{7n-5} - \frac{6}{7}\right| = \left|\left(\frac{-12}{49n+35}\right)\right| \to 0$$

as $n \to \infty$. Hence $c_n \to 6/7$. Therefore $\limsup c_n = \liminf c_n = 6/7$.

Problem 2. Let $k : [0,1] \to \mathbb{R}$ be a continuous function. Suppose that k has local maximum at two distinct points x_1, x_2 in [0,1]. Show that k has a local minimum at some point x_3 in [0,1].

Solution. Let A = [0, 1]. It is enough to show that k(A) is a compact set in \mathbb{R} . Let $\{A_{\alpha} | \alpha \in I\}$ be an open cover of k(A) for some index set I. Since k is a continuous function, $\{k^{-1}(A_{\alpha}) | \alpha \in I\}$ is an open cover of A.

Now, as A is a compact set, there exists
$$\alpha_1, \dots, \alpha_n \in I$$
 such that $\bigcup_{i=1} \{k^{-1}(A_{\alpha_i})\} \supseteq A$. Therefore

$$\bigcup_{i=1}^{n} \{k^{-1}(A_{\alpha_i})\} = k^{-1}(\bigcup_{i=1}^{n} (A_{\alpha_i})) \supseteq A$$
(1)

Therefore, $\bigcup_{i=1}^{n} A_{\alpha_i} \supseteq k(A)$. Hence k(A) is compact and hence closed and attains its minimum in particular.

Problem 3. Let $\{f_n\}_{n\geq 1}$ be a sequence of real valued continuous functions on [0,1] converging pointwise to a continuous function $f:[0,1] \to \mathbb{R}$. Show that the convergence is uniform if

$$f_n(x) \ge f_{n+1}(x) \quad \forall x \in [0,1]$$

for all $n \ge 1$. (Hint : Use compactness of [0, 1].)

Solution. Firstly observe that, since $f_n(x)$ is decreasing and $f(x) = \inf_n f_n(x)$,

$$|f_n(x) - f(x)| < |f_N(x) - f(x)|$$
(2)

for all $n \geq N$.

Let $\epsilon > 0$. Let $x \in [0,1]$. Then, there exists an N_x such that $|f_{N_x}(x) - f(x)| < \epsilon$. Since $f_{N_x} - f$ is continuous on [0,1], there exists a $\delta_{N_x} > 0$, such that

$$|f_{N_x}(y) - f(y)| < \epsilon \quad \forall y \in B(x, \delta_{N_x})$$

Where $B(x, \delta)$ is the open ball centered at x and radius δ . Now, we have that,

$$\bigcup_{x \in [0,1]} B(x, \delta_{N_x}) = [0,1]$$

Since [0, 1] is compact, there exists $x_i \in [0, 1], i \in \{1, \dots, n\}$ such that

$$\bigcup_{i=1}^{n} B(x_i, \delta_{N_{x_i}}) = [0, 1]$$

Let $N = \max_{1 \le i \le n} \{N_{x_i}\}$. Then, $|f_N(x) - f(x)| < \epsilon$ for all x. (because of (2)).

Now, again because of (2)

$$|f_n(x) - f(x)| < \epsilon \quad \forall n \ge N \ \forall x$$

Hence f_n converges uniformly.

Problem 4. Let D be a nonempty subset of \mathbb{R} and let $h : D \to \mathbb{R}$ be uniformly continuous. If D is bounded show that h is bounded. Use this result to show that $g : (0, \infty) \to \mathbb{R}$ defined by g(x) = 1/x is not uniformly continuous.

Solution. Claim: If $f: D \to \mathbb{R}$ is uniformly continuous, and if $\{x_n\} \subset D$ is cauchy, then $f(x_n)$ is also cauchy. Let $\epsilon > 0$. Then there exists a $\delta > 0$ such that if $|x - y| < \delta$, then $|f(y) - f(x)| < \epsilon$. There exists an N for this δ such that $|x_n - x_m| < \delta$ for every n, m > N.

Therefore $|f(x_n) - f(x_m)| < \epsilon$, for every $m, n \ge N$.

If h is unbounded on D, there exists a sequence $x_n \in D$ such that $h(x_n)$ is unbounded and $|h(x_n)| > n$. But since x_n is a bounded sequence in \mathbb{R} , it has a converging subsequence x_{n_k} . Therefore x_{n_k} is cauchy. But since $|h(x_{n_k})| > n_k$, we get a contradiction, due to the claim above.

Hence h is bounded.

Now, consider g restricted to (0, 1). Note that this is unbounded, while the set (0, 1) is bounded. Hence g is not uniformly continuous.

Problem 5. Let $u: [0,1] \to \mathbb{R}$ be a continuous function. Define $v: [0,1] \to \mathbb{R}$ by

$$v(x) = \sup\{u(y) : 0 \le y \le x\}$$

Show that v is a continuous function.

Solution. Let $c \in [0, 1]$. We shall consider the following cases

1. Suppose u(c) = v(c).

Let $\epsilon > 0$ be given. Choose $\delta > 0$ such that $|x - c| < \delta$ implies $|u(x) - u(c)| < \epsilon$. Pick c_1 and c_2 such that $max(c - \delta, 0) \le c_1 \le c \le c_2 \le min(1, c + \delta)$. Note that $u(x) \le v(c)$ for x < c and $u(x) < u(c) + \epsilon$ for $c \le x < c_2$. Thus for $x \in (c_1, c_2)$

$$v(c) - \epsilon = u(c) - \epsilon < u(c_1) \le v(x) \le \max(v(c), u(c) + \epsilon) = v(c) + \epsilon \tag{3}$$

From the above equation, it follows that $|v(x) - v(c)| < \epsilon$ for $x \in (c_1, c_2)$.

2. Suppose $u(c) \neq v(c)$.

Let $\epsilon = v(c) - u(c)$. $\epsilon > 0$ from the definition of v. Choose $\delta > 0$ such that $|x - c| < \delta$ implies $|u(x) - u(c)| < \epsilon$. Then either u(x) > v(c) for all $x \in (c - \delta, c + \delta) \cap [0, 1]$, or u(x) < v(c) for all $x \in (c - \delta, c + \delta) \cap [0, 1]$. The former is impossible from the definition of v and hence the latter holds which implies that v is constant on $(c - \delta, c + \delta) \cap [0, 1]$.

Hence v is continuous.

Problem 6. State and prove the mean value theorem.

Solution. If f is a real continuous function on [a, b] which is differentiable on (a, b) then there exists a point $x \in (a, b)$ at which f(b) - f(a) = (b - a)f'(x).

Let h(t) = (f(b) - f(a))t - (b - a)f(t), where $a \le t \le b$. Then h is continuous on [a, b], differentiable on (a, b) and

$$h(a) = f(b)a - f(a)b = h(b)$$
 (4)

To prove the theorem, we have to show that h'(x) = 0 for some $x \in (a, b)$.

If h is constant, this holds for every x in (a, b).

If h(t) > h(a) for some $t \in (a, b)$, let $x \in [a, b]$ at which h attains its maximum.

From equation (4) we have $x \in (a, b)$. Since h attains maximum at x, h'(x) = 0.

If h(t) < h(a) for some $t \in (a, b)$, the same argument applies if we choose for x a point on [a, b] where h attains its minimum.

Problem 7. Show that every bounded sequence of complex numbers has a convergent subsequence.

Solution. <u>Claim</u>: Every bounded sequence of real numbers has a convergent subsequence

<u>Proof:</u> Let $\{w_n\}$ be a bounded sequence of real numbers, then there exists $[a_1, b_1]$ such that $a_1 \leq w_n \leq b_1 \forall n$. Either $[a_1, (a_1 + b_1)/2]$ or $[(a_1 + b_1)/2, b_1]$ contains infinitely many terms of the sequence $\{w_n\}$. If $[a_1, (a_1 + b_1)/2]$ contains infinitely many terms, let $[a_2, b_2] = [a_1, (a_1 + b_1)/2]$, otherwise, let $[a_2, b_2] = [(a_1 + b_1)/2, b_1]$. By mathematical induction, we can continue this construction and obtain a sequence of intervals $[a_n, b_n]$ such that

- 1. for each n, $[a_n, b_n]$ contains infinitely many terms of the sequence $\{w_n\}$
- 2. for each n, $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$
- 3. for each n, $b_{n+1} a_{n+1} = (b_n a_n)/2$

The nested interval theorem implies that the intersection of all those intervals is a singleton set w. We shall now construct a subsequence of $\{w_n\}$ which will converge to w.

Since $[a_1, b_1]$ contains infinitely many terms of $\{w_n\}$, there exists a k_1 such that $w_{k_1} \in [a_1, b_1]$. Since $[a_2, b_2]$ contains infinitely many terms of $\{w_n\}$, there exists $k_2 > k_1$ such that $w_{k_2} \in [a_2, b_2]$. Continuing this process by induction, we obtain a sequence $\{w_{k_n}\} \in [a_n, b_n]$ for each n. $\{w_{k_n}\}$ is a subsequence of $\{w_n\}$ since $k_{n+1} > k_n$ for each n. Since $a_n \to w$, $b_n \to w$ and $a_n \leq w_{k_n} \leq b_n$ for each n, the squeeze theorem implies that $w_{k_n} \to w$

Let $\{z_n\}$ be a sequence of complex numbers, then $z_n = x_n + iy_n$ for some $x_n, y_n \in \mathbb{R}$.

Since z_n is bounded, x_n and y_n are also bounded. So there exists a convergent sub-sequence $\{x_{n_k}\}$. since the sub-sequence $\{y_{n_k}\}$ is also bounded, it has a convergent sub-sequence say $\{y_{n_{k_r}}\}$. Since $\{x_{n_{k_r}}\}$ and $\{y_{n_{k_r}}\}$ converge, $\{z_{n_{k_r}}\}$ also converges.

Problem 8. Consider the series $\sum_{n>1} a_n$ where

$$a_n = \begin{cases} \frac{1}{n^2} & \text{if } n \text{ is odd} \\ \frac{1}{n^3} & \text{if } n \text{ is even} \end{cases}$$

Show that this series is convergent but the convergence cannot be determined by ratio or root test.

Solution. Since $|a_n| \leq 1/n^2$ and $\sum 1/n^2$ converges, $\sum a_n$ converges. Ratio test can be used if either of the following hold:

- 1. $\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1$ in which case $\sum a_n$ converges
- 2. $|\frac{a_{n+1}}{a_n}| \ge 1$ for $n \ge n_0$ for some fixed integer n_0 in which case $\sum a_n$ diverges.

Now we can see that, $\limsup |\frac{a_{n+1}}{a_n}| > 1$ since whenever $n \ge 4$ is even, $|\frac{a_{n+1}}{a_n}| > 1$ hence the first condition does not hold.

Similarly, the second condition fails to hold when n is odd. Hence one cannot use ratio test.

Root test can be used if:

- 1. $\limsup |a_n|^{1/n} < 1$ in which case it converges
- 2. $\limsup |a_n|^{1/n} > 1$ in which case it diverges

Since, $\lim(\frac{1}{n})^{1/n} = 1$, it follows that $\lim(\frac{1}{n^2})^{1/n} = 1$ and $\lim(\frac{1}{n^3})^{1/n} = 1$. So $\limsup |a_n|^{1/n} = 1$. Therefore Root test cannot be applied.