Analysis 1 - Mid-Sem exam - 2008-09

B.Math (Hons.)

Problem 1. Consider the sequences {an}n>1, {bn}n>1, {¢n}n>1 where

1\" 2 6n + 4
an=1+(—) b= (D) T eu= o

5 P S

Compute the limit superior and limit inferior (as n tends to infinity) for these sequences.

1 n
Solution. (a) a, =1+ (_5)

Note that
1 n
n—1=(=-)] —0
on=11= (3)

as n — oo. Hence a,, — 1. Therefore limsup a,, = liminf a,, = 1.

(b) by = (-1 +

Let x,, = sup bx.. Then we have
k>n

_)1+2/n if n is even
" l142/(n+1) ifnisodd

Therefore limsup b,, = limx,, = 1.

Let y, = ér>1f br = —1. Thus we have liminf b,, = limy, = —1.
6n + 4
() en = ™m—5
Note that
6n+4 _ § B —12 0
™m—5 7| [\49n+35
as n — oco. Hence ¢, — 6/7. Therefore limsup ¢,, = liminf ¢, = 6/7. O

Problem 2. Let k : [0,1] — R be a continuous function. Suppose that k has local mazimum at two
distinct points x1,x2 in [0,1]. Show that k has a local minimum at some point x3 in [0, 1].

Solution. Let A =[0,1]. It is enough to show that k(A) is a compact set in R.
Let {Ay|a € I} be an open cover of k(A) for some index set I. Since k is a continuous function,
{k™'(A,)|a € T} is an open cover of A.

Now, as A is a compact set, there exists aq,- -, a, € I such that U{k_l(Aai)} 2 A. Therefore
i=1
Ut (e} =1 (J(Aa)) 2 4 (1)
i=1

=1



n

Therefore, U Aq, 2 k(A). Hence k(A) is compact and hence closed and attains its minimum in partic-
i=1

ular. O

Problem 3. Let {f,}n>1 be a sequence of real valued continuous functions on [0,1] converging pointwise
to a continuous function f :[0,1] — R. Show that the convergence is uniform if

fa(2) = frsa(z) Vo el01]
for alln > 1. (Hint : Use compactness of [0,1].)

Solution. Firstly observe that, since f,(x) is decreasing and f(z) = inf f, (),

[fn(@) = ()] <[fn(z) = f(2)] (2)

for all n > N.

Let € > 0. Let € [0,1]. Then, there exists an N, such that |fy, (z) — f(z)| < e. Since fn, — f is
continuous on [0, 1], there exists a dy, > 0, such that

|fn.(y) — fw)l <e Vye B(x,0n,)

Where B(z,d) is the open ball centered at 2 and radius §. Now, we have that,
U B(z.én,) =101]
z€[0,1]

Since [0, 1] is compact, there exists z; € [0,1], ¢ € {1,--- ,n} such that

n

U B(xi.6n,,) = [0.1]

i=1
Let N = max {Ng,}. Then, |fn(x) — f(x)] < € for all z. (because of (2)).

Now, again because of (2)
|[fn(z) — f(z)] <e VYn>N Va

Hence f,, converges uniformly. O

Problem 4. Let D be a nonempty subset of R and let h : D — R be uniformly continuous. If D is
bounded show that h is bounded. Use this result to show that g : (0,00) — R defined by g(x) = 1/x is
not uniformly continuous.

Solution. Claim: If f : D — R is uniformly continuous, and if {z,} C D is cauchy, then f(z,) is also
cauchy. Let € > 0. Then there exists a § > 0 such that if |z — y| < §, then |f(y) — f(z)| < e. There
exists an N for this § such that |z, — z,,|< ¢ for every n,m > N.

Therefore |f(zy) — f(zm)| < €, for every m,n > N.

If h is unbounded on D, there exists a sequence x,, € D such that h(x,) is unbounded and |h(z,)| > n.
But since z,, is a bounded sequence in R, it has a converging subsequence x,,, . Therefore x,,, is cauchy.
But since |h(zy, )| > ni, we get a contradiction, due to the claim above.

Hence h is bounded.

Now, consider g restricted to (0,1). Note that this is unbounded, while the set (0, 1) is bounded. Hence
¢ is not uniformly continuous.

O



Problem 5. Let u:[0,1] = R be a continuous function. Define v :[0,1] = R by
v(z) =sup{u(y) : 0 <y <z}

Show that v is a continuous function.
Solution. Let ¢ € [0,1]. We shall consider the following cases

1. Suppose u(c) = v(c).
Let € > 0 be given. Choose § > 0 such that | x — ¢ |< ¢ implies | u(x) — u(c) |< e. Pick ¢; and
¢ such that maz(c —6,0) < ¢ < ¢ < ¢a < min(l,c+ ). Note that u(x) < v(c) for z < ¢ and
u(z) < ulc)+ e for ¢ <z < cy. Thus for x € (c1,¢2)

v(c) —e=wu(c) —e <u(er) < v(z) <maz(v(c),ulc) +¢€) =v(c) +¢€ (3)
From the above equation, it follows that | v(x) — v(c) |< € for = € (c1, c2).
2. Suppose u(c) # v(c).
Let € = v(c) — u(c). € > 0 from the definition of v. Choose § > 0 such that | x — ¢ |< ¢ implies
| u(z) — u(c) |< e. Then either u(z) > v(c) for all z € (¢ — d,¢+ ) N[0, 1], or u(x) < v(c) for all
x € (c—3d,¢c+ ) N[0,1]. The former is impossible from the definition of v and hence the latter
holds which implies that v is constant on (¢ — d, ¢+ §) N [0, 1].
Hence v is continuous. O
Problem 6. State and prove the mean value theorem.
Solution. If f is a real continuous function on [a,b] which is differentiable on (a,b) then there exists a
point z € (a,b) at which f(b) — f(a) = (b—a)f ().
Let h(t) = (f(b) — f(a))t — (b—a)f(t), where a < ¢t < b. Then h is continuous on [a, b], differentiable on
(a,b) and
h(a) = f(b)a — f(a)b = h(b) (4)
To prove the theorem, we have to show that h'(z) = 0 for some z € (a,b).
If h is constant, this holds for every z in (a,b).
If h(t) > h(a) for some t € (a,b), let = € [a,b] at which h attains its maximum.

From equation (4) we have = € (a,b). Since h attains maximum at z, h'(z) = 0.

If h(t) < h(a) for some ¢ € (a,b), the same argument applies if we choose for  a point on [a, b] where h
attains its minimum.

O

Problem 7. Show that every bounded sequence of complex numbers has a convergent subsequence.

Solution. Claim: Every bounded sequence of real numbers has a convergent subsequence

Proof: Let {w,} be a bounded sequence of real numbers, then there exists [a1,b;] such that a; <
wy, < b1¥n. Either [a1, (a1 + b1)/2] or [(a1 + b1)/2,b1] contains infinitely many terms of the sequence
{wn}. If [a1, (a1 + b1)/2] contains infinitely many terms, let [ag, bs] = [a1, (a1 + b1)/2], otherwise, let
[az,b2] = [(a1 + b1)/2,b1]. By mathematical induction, we can continue this construction and obtain a
sequence of intervals [a,, b,] such that



1. for each n, [ay,, b,] contains infinitely many terms of the sequence {w,}
2. for each n, [ap41,bnt1] C [an, by

3. for each n, byy1 — any1 = (bn — an)/2

The nested interval theorem implies that the intersection of all those intervals is a singleton set w. We
shall now construct a subsequence of {w,,} which will converge to w.

Since [a1, b1] contains infinitely many terms of {w,}, there exists a ky such that wg, € [a1,b1]. Since
[az, bs] contains infinitely many terms of {w, }, there exists ko > k1 such that wg, € [az,bs]. Continuing
this process by induction, we obtain a sequence {wy, } € [an,by] for each n. {wg, } is a subsequence of
{wy} since k11 > ky, for each n. Since a, — w, b, — w and a, < wy, < by, for each n, the squeeze
theorem implies that wy, — w |

Let {z,} be a sequence of complex numbers, then z, = x,, + iy, for some z,,y, € R.

Since zy, is bounded, z,, and y,, are also bounded. So there exists a convergent sub-sequence {z,, }. since
the sub-sequence {yy, } is also bounded, it has a convergent sub-sequence say {y,, }. Since {x,, } and
{¥ns, } converge, {z,, } also converges.

O
Problem 8. Consider the series Z an, where

n>1

1
— ifnis odd
an =

—  if n is even
n3

Show that this series is convergent but the convergence cannot be determined by ratio or root test.

Solution. Since |a,| < 1/n? and Z 1/n? converges, Zan converges.
Ratio test can be used if either of the following hold:

Ap+1

1. limsup | |< 1 in which case Zan converges

a . . . .
2. | Intl |> 1 for n > ng for some fixed integer ng in which case Z an diverges.

n

Gn41 An+1

|> 1 since whenever n > 4 is even, | |> 1 hence the first

n n

Now we can see that, limsup |

condition does not hold.
Similarly, the second condition fails to hold when n is odd. Hence one cannot use ratio test.

Root test can be used if:

1. limsup | a, |/™< 1 in which case it converges

2. limsup | a, |*/"> 1 in which case it diverges

1 1 1
Since, hm(ﬁ)l/” = 1, it follows that lim(ﬁ)l/” =1 and lim(ﬁ)l/" = 1. So limsup | a, |"/"= 1.
Therefore Root test cannot be applied. O



