
Analysis 1 - Mid-Sem exam - 2008-09

B.Math (Hons.)

Problem 1. Consider the sequences {an}n≥1, {bn}n≥1, {cn}n≥1 where

an = 1 +

(
−1

5

)n
; bn = (−1)n +

2

n
; cn =

6n+ 4

7n− 5

Compute the limit superior and limit inferior (as n tends to infinity) for these sequences.

Solution. (a) an = 1 +

(
−1

5

)n
Note that

|an − 1| =
(

1

5

)n
→ 0

as n→∞. Hence an → 1. Therefore lim sup an = lim inf an = 1.

(b) bn = (−1)n +
2

n

Let xn = sup
k≥n

bk. Then we have

xn =

{
1 + 2/n if n is even

1 + 2/(n+ 1) if n is odd

Therefore lim sup bn = limxn = 1.

Let yn = inf
k≥n

bk = −1. Thus we have lim inf bn = lim yn = −1.

(c) cn =
6n+ 4

7n− 5

Note that ∣∣∣∣6n+ 4

7n− 5
− 6

7

∣∣∣∣ =

∣∣∣∣( −12

49n+ 35

)∣∣∣∣→ 0

as n→∞. Hence cn → 6/7. Therefore lim sup cn = lim inf cn = 6/7.

Problem 2. Let k : [0, 1] → R be a continuous function. Suppose that k has local maximum at two
distinct points x1, x2 in [0, 1]. Show that k has a local minimum at some point x3 in [0, 1].

Solution. Let A = [0, 1]. It is enough to show that k(A) is a compact set in R.
Let {Aα|α ∈ I} be an open cover of k(A) for some index set I. Since k is a continuous function,
{k−1(Aα)|α ∈ I} is an open cover of A.

Now, as A is a compact set, there exists α1, · · · , αn ∈ I such that

n⋃
i=1

{k−1(Aαi)} ⊇ A. Therefore

n⋃
i=1

{k−1(Aαi)} = k−1(

n⋃
i=1

(Aαi)) ⊇ A (1)
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Therefore,

n⋃
i=1

Aαi
⊇ k(A). Hence k(A) is compact and hence closed and attains its minimum in partic-

ular.

Problem 3. Let {fn}n≥1 be a sequence of real valued continuous functions on [0, 1] converging pointwise
to a continuous function f : [0, 1]→ R. Show that the convergence is uniform if

fn(x) ≥ fn+1(x) ∀x ∈ [0, 1]

for all n ≥ 1. (Hint : Use compactness of [0, 1].)

Solution. Firstly observe that, since fn(x) is decreasing and f(x) = inf
n
fn(x),

|fn(x)− f(x)| < |fN (x)− f(x)| (2)

for all n ≥ N .

Let ε > 0. Let x ∈ [0, 1]. Then, there exists an Nx such that |fNx
(x) − f(x)| < ε. Since fNx

− f is
continuous on [0, 1], there exists a δNx > 0, such that

|fNx
(y)− f(y)| < ε ∀y ∈ B(x, δNx

)

Where B(x, δ) is the open ball centered at x and radius δ. Now, we have that,⋃
x∈[0,1]

B(x, δNx
) = [0, 1]

Since [0, 1] is compact, there exists xi ∈ [0, 1], i ∈ {1, · · · , n} such that

n⋃
i=1

B(xi, δNxi
) = [0, 1]

Let N = max
1≤i≤n

{Nxi
}. Then, |fN (x)− f(x)| < ε for all x. (because of (2)).

Now, again because of (2)
|fn(x)− f(x)| < ε ∀n ≥ N ∀x

Hence fn converges uniformly.

Problem 4. Let D be a nonempty subset of R and let h : D → R be uniformly continuous. If D is
bounded show that h is bounded. Use this result to show that g : (0,∞) → R defined by g(x) = 1/x is
not uniformly continuous.

Solution. Claim: If f : D → R is uniformly continuous, and if {xn} ⊂ D is cauchy, then f(xn) is also
cauchy. Let ε > 0. Then there exists a δ > 0 such that if |x − y| < δ, then |f(y) − f(x)| < ε. There
exists an N for this δ such that |xn − xm|< δ for every n,m > N .

Therefore |f(xn)− f(xm)| < ε, for every m,n ≥ N .

If h is unbounded on D, there exists a sequence xn ∈ D such that h(xn) is unbounded and |h(xn)| > n.
But since xn is a bounded sequence in R, it has a converging subsequence xnk

. Therefore xnk
is cauchy.

But since |h(xnk
)| > nk, we get a contradiction, due to the claim above.

Hence h is bounded.

Now, consider g restricted to (0, 1). Note that this is unbounded, while the set (0, 1) is bounded. Hence
g is not uniformly continuous.
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Problem 5. Let u : [0, 1]→ R be a continuous function. Define v : [0, 1]→ R by

v(x) = sup{u(y) : 0 ≤ y ≤ x}

Show that v is a continuous function.

Solution. Let c ∈ [0, 1]. We shall consider the following cases

1. Suppose u(c) = v(c).
Let ε > 0 be given. Choose δ > 0 such that | x − c |< δ implies | u(x) − u(c) |< ε. Pick c1 and
c2 such that max(c − δ, 0) ≤ c1 ≤ c ≤ c2 ≤ min(1, c + δ). Note that u(x) ≤ v(c) for x < c and
u(x) < u(c) + ε for c ≤ x < c2. Thus for x ∈ (c1, c2)

v(c)− ε = u(c)− ε < u(c1) ≤ v(x) ≤ max(v(c), u(c) + ε) = v(c) + ε (3)

From the above equation, it follows that | v(x)− v(c) |< ε for x ∈ (c1, c2).

2. Suppose u(c) 6= v(c).
Let ε = v(c) − u(c). ε > 0 from the definition of v. Choose δ > 0 such that | x − c |< δ implies
| u(x) − u(c) |< ε. Then either u(x) > v(c) for all x ∈ (c − δ, c + δ) ∩ [0, 1], or u(x) < v(c) for all
x ∈ (c − δ, c + δ) ∩ [0, 1]. The former is impossible from the definition of v and hence the latter
holds which implies that v is constant on (c− δ, c+ δ) ∩ [0, 1].

Hence v is continuous.

Problem 6. State and prove the mean value theorem.

Solution. If f is a real continuous function on [a, b] which is differentiable on (a, b) then there exists a
point x ∈ (a, b) at which f(b)− f(a) = (b− a)f ′(x).

Let h(t) = (f(b)− f(a))t− (b− a)f(t), where a ≤ t ≤ b. Then h is continuous on [a, b], differentiable on
(a, b) and

h(a) = f(b)a− f(a)b = h(b) (4)

To prove the theorem, we have to show that h′(x) = 0 for some x ∈ (a, b).

If h is constant, this holds for every x in (a, b).

If h(t) > h(a) for some t ∈ (a, b), let x ∈ [a, b] at which h attains its maximum.

From equation (4) we have x ∈ (a, b). Since h attains maximum at x, h′(x) = 0.

If h(t) < h(a) for some t ∈ (a, b), the same argument applies if we choose for x a point on [a, b] where h
attains its minimum.

Problem 7. Show that every bounded sequence of complex numbers has a convergent subsequence.

Solution. Claim: Every bounded sequence of real numbers has a convergent subsequence

Proof: Let {wn} be a bounded sequence of real numbers, then there exists [a1, b1] such that a1 ≤
wn ≤ b1∀n. Either [a1, (a1 + b1)/2] or [(a1 + b1)/2, b1] contains infinitely many terms of the sequence
{wn}. If [a1, (a1 + b1)/2] contains infinitely many terms, let [a2, b2] = [a1, (a1 + b1)/2], otherwise, let
[a2, b2] = [(a1 + b1)/2, b1]. By mathematical induction, we can continue this construction and obtain a
sequence of intervals [an, bn] such that
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1. for each n, [an, bn] contains infinitely many terms of the sequence {wn}

2. for each n, [an+1, bn+1] ⊆ [an, bn]

3. for each n, bn+1 − an+1 = (bn − an)/2

The nested interval theorem implies that the intersection of all those intervals is a singleton set w. We
shall now construct a subsequence of {wn} which will converge to w.
Since [a1, b1] contains infinitely many terms of {wn}, there exists a k1 such that wk1 ∈ [a1, b1]. Since
[a2, b2] contains infinitely many terms of {wn}, there exists k2 > k1 such that wk2 ∈ [a2, b2]. Continuing
this process by induction, we obtain a sequence {wkn} ∈ [an, bn] for each n. {wkn} is a subsequence of
{wn} since kn+1 > kn for each n. Since an → w, bn → w and an ≤ wkn ≤ bn for each n, the squeeze
theorem implies that wkn → w �

Let {zn} be a sequence of complex numbers, then zn = xn + iyn for some xn, yn ∈ R.

Since zn is bounded, xn and yn are also bounded. So there exists a convergent sub-sequence {xnk
}. since

the sub-sequence {ynk
} is also bounded, it has a convergent sub-sequence say {ynkr

}. Since {xnkr
} and

{ynkr
} converge, {znkr

} also converges.

Problem 8. Consider the series
∑
n≥1

an where

an =


1

n2
if n is odd

1

n3
if n is even

Show that this series is convergent but the convergence cannot be determined by ratio or root test.

Solution. Since |an| ≤ 1/n2 and
∑

1/n2 converges,
∑

an converges.

Ratio test can be used if either of the following hold:

1. lim sup | an+1

an
|< 1 in which case

∑
an converges

2. | an+1

an
|≥ 1 for n ≥ n0 for some fixed integer n0 in which case

∑
an diverges.

Now we can see that, lim sup | an+1

an
|> 1 since whenever n ≥ 4 is even, | an+1

an
|> 1 hence the first

condition does not hold.

Similarly, the second condition fails to hold when n is odd. Hence one cannot use ratio test.

Root test can be used if:

1. lim sup | an |1/n< 1 in which case it converges

2. lim sup | an |1/n> 1 in which case it diverges

Since, lim(
1

n
)1/n = 1, it follows that lim(

1

n2
)1/n = 1 and lim(

1

n3
)1/n = 1. So lim sup | an |1/n= 1.

Therefore Root test cannot be applied.
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